Knot Floer Homology and Integer Surgeries

نویسنده

  • PETER OZSVÁTH
چکیده

Let Y be a closed three-manifold with trivial first homology, and let K ⊂ Y be a knot. We give a description of the Heegaard Floer homology of integer surgeries on Y along K in terms of the filtered homotopy type of the knot invariant for K. As an illustration of these techniques, we calculate the Heegaard Floer homology groups of non-trivial circle bundles over Riemann surfaces (with coefficients in Z/2Z).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Floer homology of surgeries on two-bridge knots

We compute the Ozsv ath-Szab o Floer homologies HF and d HF for three-manifolds obtained by integer surgery on a two-bridge knot. AMS Classi cation 57R58; 57M27

متن کامل

On Knot Floer Homology and Lens Space Surgeries

In an earlier paper, we used the absolute grading on Heegaard Floer homology HF to give restrictions on knots in S which admit lens space surgeries. The aim of the present article is to exhibit stronger restrictions on such knots, arising from knot Floer homology. One consequence is that all the non-zero coefficients of the Alexander polynomial of such a knot are ±1. This information in turn ca...

متن کامل

Knot Floer Homology and Rational Surgeries

Let K be a rationally null-homologous knot in a three-manifold Y . We construct a version of knot Floer homology in this context, including a description of the Floer homology of a three-manifold obtained as Morse surgery on the knot K. As an application, we express the Heegaard Floer homology of rational surgeries on Y along a null-homologous knot K in terms of the filtered homotopy type of th...

متن کامل

Involutive Heegaard Floer Homology

Using the conjugation symmetry on Heegaard Floer complexes, we define a three-manifold invariant called involutive Heegaard Floer homology, which is meant to correspond to Z4-equivariant Seiberg-Witten Floer homology. Further, we obtain two new invariants of homology cobordism, d and d̄, and two invariants of smooth knot concordance, V 0 and V 0. We also develop a formula for the involutive Heeg...

متن کامل

Floer Homology and Knot Complements

We use the Ozsváth-Szabó theory of Floer homology to define an invariant of knot complements in three-manifolds. This invariant takes the form of a filtered chain complex, which we call ĈF r. It carries information about the Ozsváth-Szabó Floer homology of large integral surgeries on the knot. Using the exact triangle, we derive information about other surgeries on knots, and about the maps on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007